Minggu, 21 Juni 2009

SUPERSCALAR

Definisi dan Perkembangan Superscalar[1]

Superscalar adalah arsitektur prosessor yang memungkinkan eksekusi yang bersamaan (parallel) dari instruksi yang banyak pada tahap pipeline yang sama sebaik tahap pipeline yang lain.

Pipeline sendiri adalah meningkatkan kinerja komputer dengan cara saling overlap tahapan dari instruksi yang berbeda.

Pada pipenline untuk melakukan proses (stages) overlapping dibutuhkan paling tidak setengah clock. Sedangkan superscalar mengijinkan proses untuk bekerja secara bersamaan pada saat clock yang sama.

Superscalar ini menerapkan suatu bentuk paralel disebut-tingkat instruksi paralel dalam satu prosesor, sehingga memungkinkan lebih cepat. Sebuah prosesor superscalar melaksanakan lebih dari satu instruksi selama satu jam secara bersamaan dengan siklus dispatching beberapa petunjuk ke membazir fungsional unit pada prosesor. Setiap unit fungsional tidak terpisah CPU inti, tetapi sebuah sumber daya eksekusi dalam satu CPU seperti aritmetika logis unit, sedikit Shifter, atau kelipatan.

Perkembangan superscalar pertama kali diawali oleh Seymour Cray's CDC 6600 dari 1965 sering disebut sebagai pertama superscalar desain. Intel i960CA (1988) dan seri AMD 29000-29050 (1990) mikro yang komersial pertama chip tunggal superscalar mikro. CPU RISC seperti ini membawa konsep superscalar untuk mikro komputer RISC karena hasil desain yang sederhana inti, agar mudah instruksi dispatch dan keterlibatan beberapa unit fungsional (seperti ALUs) pada satu CPU dalam rancangan peraturan yang terpaksa waktu. Ini adalah alasan yang RISC desain yang lebih cepat dari CISC desain melalui ke dalam tahun 1980-an dan 1990-an.[2]

Kecuali untuk digunakan dalam beberapa CPU-daya baterai perangkat, pada dasarnya semua tujuan-CPU umum dikembangkan sejak 1998 adalah superscalar. Diawali dengan "P6" (Pentium Pro dan Pentium II) pelaksanaan, Intel x86 arsitektur mikro yang telah menerapkan CISC pada set instruksi RISC superscalar mikro. Kompleks petunjuk yang diterjemahkan secara internal ke-RISC seperti "micro-ops" set instruksi RISC, prosesor yang memungkinkan untuk mengambil keuntungan dari performa yang lebih tinggi-prosesor yang melandasi tetap kompatibel dengan prosesor Intel sebelumnya.[2]

Contoh Penerapan Superscalar [1]

Contoh CPU yang telah menerapkan arsitektur superscalar :

Intel Processors
• 486, Pentium, Pentium Pro

Superscalar Processor Design
• Use PowerPC 604 as case study
• Speculative Execution, Register Renaming, Branch Prediction

More Superscalar Examples
• MIPS R10000
• DEC Alpha 21264

Berikut perbandingan superscalar dengan system i386
Cycles Per Instruction
Instruction Type 386 Cycles 486 Cycles
Load 4 1
Store 2 1
ALU 2 1
Jump taken 9 3
Jump not taken 3 1
Call 9 3

Superscalar dapat mengeksekusi instruksi 1 (I1) dan instruksi 2 (I2) secara pararel dengan syarat
– Keduanya instruksi yang sederhana
– I1 tidak melakukan proses jump
– Tujuan (destination) dari I1 bukan sumber (source) dari I2
– Tujaun (destinition) dari I1 bukan tujuan (destination) dari I2

Jika kondisi diatas tidak dapat dipenuhi
– I1 melakukan proses U-pipe
– I2 dijalankan di cycle berikutnya.


Pustaka:
[1] Superscalar VS Pipelining
[2] Superscalar Processor

CISC (Complex Instruction Set Computing)

Definisi dan Perkembangan CISC [1]

Complex Instruction Set Computing disingkat CISC (baca : “sisk”) merupakan rangkaian instruksi built-in pada processor yang terdiri dari perintah-perintah yang kompleks. Tujuan utama dari arsitektur CISC adalah melaksanakan suatu perintah cukup dengan beberapa baris bahasa mesin sedikit mungkin. Hal ini bisa tercapai dengan cara membuat perangkat keras prosesor mampu memahami dan menjalankan beberapa rangkaian operasi. Untuk tujuan contoh kita kali ini, sebuah prosesor CISC sudah dilengkapi dengan sebuah instruksi khusus, yang kita beri nama MULT. Saat dijalankan, instruksi akan membaca dua nilai dan menyimpannya ke 2 register yag berbeda, melakukan perkalian operan di unit eksekusi dan kemudian mengambalikan lagi hasilnya ke register yang benar.

MULT dalam hal ini lebih dikenal sebagai “complex instruction”, atau instruksi yang kompleks. Bekerja secara langsung melalui memori komputer dan tidak memerlukan instruksi lain seperti fungsi baca maupun menyimpan.
Satu kelebihan dari sistem ini adalah kompailer hanya menerjemahkan instruksi-instruksi bahasa tingkat-tinggi ke dalam sebuah bahasa mesin. Karena panjang kode instruksi relatif pendek, hanya sedikit saja dari RAM yang digunakan untuk menyimpan instruksi-instruksi tersebut.

Pada dasarnya CISC merupakan kebalikan dari RISC, biasanya digunakan pada keluarga processor untuk PC (AMD, Cyrix). Para pesaing Intel seperti Cyrix dan AMD juga telah menggunakan chip RISC tetapi ia telah dilengkapi dengan penukar (converter) CISC.

Para perancang mikroprosesor mencari kinerja lebih bagus di dalam keterbatasan teknologi kontemporer. Pada tahun 1970-an misalnya, memori diukur dengan kilobyte dan sangat mahal saat itu. CISC merupakan pendekatan dominan karena menghemat memori.
Pada arsitektur CISC seperti Intel x86, yang diperkenalkan pada tahun 1978, bisa terdapat ratusan instruksi program - perintah-perintah sederhana yang menyuruh sistem menambah angka, menyimpan nilai dan menampilkan hasilnya. Bila semua instruksi panjangnya sama, instruksi sederhana akan memboroskan memori. Instruksi sederhana membutuhkan ruang penyimpanan 8 bit, sementara instruksi yang paling kompleks mengkonsumsi sebanyak 120 bit.

Walaupun instruksi dengan panjang bervariasi lebih sulit diproses oleh chip, instruksi CISC yang lebih panjang akan lebih kompleks. Bagaimanapun, untuk memelihara kompatibilitas software, chip x86 seperti Intel Pentium III dan AMD Athlon harus bekerja dengan instruksi CISC yang dirancang pada tahun 1980-an, walaupun keuntungan awalnya yaitu menghemat memori tidaklah penting sekarang.

Perbedaan RISC dan CISC[2]

Secara umum perbedaan antara RISC dan CISC dapat terlihat pada tabel di bawah ini:




















Terlihat beberapa perbedaan yang mencolok antara keduanya, pada daya yang dibutuhkan RISC membutuhkan sedikit daya dibandingkan dengan CISC. Kecepatan komputasi CISC jauh lebih unggul, kemudian dengan metode pengalamatan RISC lebih unggul dalam kecepatan dengan menggunakan pengalamatan secara langsung. Harga CISC puluhan kali lipat dari RISC karena kompleksotas dari CISC. Keduanya mengemisikan panas hanya saja pada CISC dibutuhkan sistem pendinginan. Untuk interrupt pada RISC lebih mudah diterapkan dan lebih cepat. Keuntungan dari CISC pada sistem operasi yang lebih mudah pengimplementasiannya dibandingkan dengan RISC.

Secara umum kelebihan dari RISC yaitu kesederhanaan dari instruksinya. Dengan jumlah instruksi yang lebih sedikit maka jumlah transistor yang dibutuhkan semakin sedikit yang tentu saja berujung pada murahnya sistem ini dibandingkan dengan seterunya. Selain itu dengan lebih sedikitnya instruksi hanya pada instruksi yang sering digunakan saja maka waktu komputasi computer akan semakin sedikit. Kelebihan utama dari RISC adalah fasilitas prefatch dan pipe line, untuk CISC sendiri eksekusi dilakukan secara sekuensial. Sedangkan untuk CISC, kelebihannya terdapat dalam pengimplementasian menggunakan software dimana akan lebih memudahkan programmer, dimana untuk RISC software yang dibuat akan jauh lebih kompleks dikarenakan instruksinya yang sedikit.


Pustaka :
[1] Kamus Komputer dan Teknologi Informasi
[2] RISC VS CISC

RISC (Reduced Instruction Set Computing)

Definisi dan Perkembangan RISC [1]

Pada dasarnya RISC merupakan rancangan arsitektur CPU yang mempunyai arti filosofi bahwa setiap prosesor dibuat dengan arsitektur yang tidak rumit dengan membatasi jumlah instruksi hanya pada instruksi dasar yang diperlukan saja. Rancangan ini berawal dari pertimbangan dan analisa model perancangan yang kompleks sehingga harus ada pengurangan set instruksinya. Konsep RISC pertama kali dikembangkan oleh IBM pada era 1970-an. Komputer pertama yang menggunakan RISC adalah komputer mini IBM 807 yang diperkenalkan pada tahun 1980. Dewasa ini, RISC digunakan pada keluarga processor buatan Motorola (PowerPC) dan SUN Microsystems (Sparc, UltraSparc).

RISC dikembangkan melalui seorang penelitinya yang bernama John Cocke, beliau menyampaikan bahwa sebenarnya kekhasan dari komputer tidaklah menggunakan banyak instruksi, namun yang dimilikinya adalah instruksi yang kompleks yang dilakukan melalui rangkaian sirkuit.

Pada desain chip mikroprosesor jenis ini, pemroses diharapkan dapat melaksanakan perintah-perintah yang dijalankannya secara cepat dan efisien melalui penyediaan himpunan instruksi yang jumlahnya relatif sedikit, dengan mengambil perintah-perintah yang sangat sederhana, akibatnya arsitektur RISC membatasi jumlah instruksinya yang dipasang ke dalam mikroprosesor tetapi mengoptimasi setiap instruksi sehingga dapat dilaksanakan dengan cepat.

Dengan demikian instruksi yang sederhana dapat dilaksanakan lebih cepat apabila dibandingkan dengan mikroprosesor yang dirancang untuk menangan susunan instruksi yang lebih luas.

Dengan demikian chip RISC hanya dapat memproses instruksi dalam jumlah terbatas, tetapi instruksi ini dioptimalkan sehingga cepat dieksekusi. Meski demikian, bila harus menangani tugas yang kompleks, instruksi harus dibagi menjadi banyak kode mesin, terutama sebelum chip RISC dapat menanganinya. Karena keterbatasan jumlah instruksi yang ada padanya, apabila terjadi kesalahan dalam pemrosesan akan memudahkan dalam melacak kesalahan tersebut.

Pada tahun 1980-an kapasitas modul memori meningkat dan harganya turun. Penekanan pada desain CPU bergeser ke kinerja, dan RISC menjadi trend baru. Contoh arsitektur RISC meliputi SPARC dari Sun Microsystems; seri MIPS Rxxxx dari MIPS Technologies; Alpha dari Digital Equipment; PowerPC yang dikembangkan bersama oleh IBM dan Motorola; dan RISC dari Hewlett-Packard.



Karekteristik RISC[2]

RISC mempunyai beberapa karakteristik, antara lain adalah

  • Siklus instruksi, merupakan siklus mesin yang ditentukan oleh waktu yang digunakan untuk mengambil dua buah operand dari register, melakukan operasi ALU dan menyimpan hasil operasi ke dalam register. Dan instruksi ini biasa dibatasi dengan instruksi dasar saja.

  • Operasi Pertukaran Data, pertukaran data ini biasanya berbentuk register ke register yang mana mengoptimalkan penggunaan memori register agar siklus operasinya semakin cepat. Penggunaan register ini dikarenakan register merupakan memori yang paling cepat dibandingkan cache maupun memori utama.

  • Mode pengalamatan, fitur rancangan ini juga dapat menyederhanakan sel instruksi dan unit control. Yang mana dengan mode pengalamatan yang sederhana akan didapatkan operasi pengambilan data dan penyimpanan data semakin cepat.

  • Format instruksi, umumnya hanya digunakan sebuah format atau beberapa format saja untuk menyederhanakan implementasi perangkat kerasnya.


Ciri - Ciri RISC:[2]

  1. Instruksi berukuran tunggal.

  2. Ukuran yang umum adalah 4 byte.

  3. Jumlah pengalamatan data sediki, biasanya kurang dari 5 buah.

  4. Tidak terdapat pengalamatan tidak langsung yang mengharuskan melakukan sebuah akses memori agar memperoleh alamat operand lainnya dalam memori.

  5. Tidak terdapat operasi yang menggabungkan operasi load/store dengan operasi aritmatika, seperti penambahan ke memori dan penambahan dari memori.

  6. Tidak terdapat lebih dari satu operand beralamat memori per instruksi.

  7. Tidak mendukung perataan sembarang bagi data untuk operasi load/store.

  8. Jumlah maksimum pemakaian memori manajemen bagi suatu alamat data adalah sebuh instruksi.

  9. Jumlah bit bagi integer register spesifier sama dengan 5 atau lebih, artinya sedikitnya 32 buah register integer dapat direferensikan sekaligus secara eksplisit.

  10. Jumlah bit floating point register spesifier sama dengan 4 atau lebih, artinya sedikitnya 16 register floating point dapat direferensikan sekaligus secara eksplisit.




KELEBIHAN DAN KEKURANGAN TEKNOLOGI RISC[2]
RISC mempunyai beberapa kelebihan dan kekurangan, antara lain:


KELEBIHAN

  • Berkaitan dengan penyederhanaan kompiler, dimana tugas pembuat kompiler untuk menghasilkan rangkaian instruksi mesin bagi semua pernyataan HLL.

  • Instruksi mesin yang kompleks seringkali sulit digunakan karena kompiler harus menemukan kasus-kasus yang sesuai dengan konsepnya.

  • Pekerjaan mengoptimalkan kode yang dihasilkan untuk meminimalkan ukuran kode, mengurangi hitungan eksekusi instruksi, dan meningkatkan pipelining jauh lebih mudah apabila menggunakan RISC dibanding menggunakan CISC.

  • Arsitektur RISC yang mendasari PowerPC memiliki kecenderungan lebih menekankan pada referensi register dibanding referensi memori, dan referensi register memerlukan bit yang lebih sedikit sehingga memiliki akses eksekusi instruksi lebih cepat.

  • Kecenderungan operasi register ke register akan lebih menyederhanakan set instruksi dan menyederhanakan unit kontrol serta pengoptimasian register akan menyebabkan operand-operand yang sering diakses akan tetap berada dipenyimpan berkecepatan tinggi.

  • Penggunaan mode pengalamatan dan format instruksi yang lebih sederhana.

KEKURANGAN

  • Program yang dihasilkan dalam bahasa simbolik akan lebih panjang (instruksinya lebih banyak).

  • Program berukuran lebih besar sehingga membutuhkan memori yang lebih banyak, ini tentunya kurang menghemat sumber daya.

  • Program yang berukuran lebih besar akan menyebabkan menurunnya kinerja, yaitu instruksi yang lebih banyak artinya akan lebih banyak byte-byte instruksi yang harus diambil. Selain itu,Pada lingkungan paging akan menyebabkan kemungkinan terjadinya page fault lebih besar.





Pustaka :
[1] Kamus Komputer dan Teknologi Informasi
[2] ARSITEKTUR REDUCED INSTRUCTION
SET COMPUTERS (RISC)

Sabtu, 20 Juni 2009

DAMPAK POSITIF GREEN HOUSE

Global warming adalah suatu peristiwa yang disebabkan meningkatnya efek rumah kaca (green house effect). Sebenarnya efek rumah kaca bukanlah suatu hal yang buruk, justru dengan adanya efek rumah kaca bumi kita bisa tetap hangat, bahkan memungkinkan kita bisa survive hingga sekarang.

Kamu bisa mengibaratkan bumi kita seperti mobil yang sedang diparkir dalam cuaca yang cerah. Kamu pasti akan berpikir bahwa temperature di dalam mobil pasti akan lebih panas dibandingkan temperature di luar mobil. Sinar matahari memasuki mobil tersebut melalui celah-celah pada kaca jendela dan secara otomatis panas dari sinar matahari akan diserap oleh jok, karpet, dashboard serta benda-benda lain yang berada di dalam mobil. Ketika semua objek tersebut melepaskan kembali panas yang diserapnya, tidak semua panas tersebut akan bisa keluar melalui celah jendela, sebagian justru akan dipantulkan kembali- panas tersebut akan diradiasikan kembali oleh benda-benda yang ada di dalam mobil dengan panjang gelombang yang berbeda-beda. Sehingga sejumlah energy panas akan tetap tinggal di dalam mobil, dan hanya sebagian kecil dari energy tersebut yang bisa melepaskan diri. Pada akhirnya, mobil tersebut akan mengalami peningkatan temperature secara berkala, semakin lama akan semakin panas.[1]


PUSTAKA

[1] klik